Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 18612, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903823

RESUMO

The phylum Phoronida comprises filter-feeding invertebrates that live in a protective tube sometimes reinforced with particulate material from the surrounding environments. Animals with these characteristics make promising candidate hosts for symbiotic bacteria, given the constant interactions with various bacterial colonizers, yet phoronids are one of the very few animal phyla with no available microbiome data whatsoever. Here, by sequencing the V4 region of the 16S rRNA gene, we compare bacterial microbiomes in whole phoronids, including both tube and living tissues, with those associated exclusively to the isolated tube and/or the naked animal inside. We also compare these communities with those from the surrounding water. Phoronid microbiomes from specimens belonging to the same colony but collected a month apart were significantly different, and bacterial taxa previously reported in association with invertebrates and sediment were found to drive this difference. The microbiomes associated with the tubes are very similar in composition to those isolated from whole animals. However, just over half of bacteria found in whole specimens are also found both in tubes and naked specimens. In conclusion, phoronids harbour bacterial microbiomes that differ from those in the surrounding water, but the composition of those microbiomes is not stable and appears to change in the same colony over a relatively short time frame. Considering individual spatial/anatomical compartments, the phoronid tube contributes most to the whole-animal microbiome.


Assuntos
Invertebrados , Microbiota , Animais , RNA Ribossômico 16S/genética , Bactérias , Água
2.
BMC Biol ; 21(1): 137, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280585

RESUMO

BACKGROUND: Intracellular symbionts often undergo genome reduction, losing both coding and non-coding DNA in a process that ultimately produces small, gene-dense genomes with few genes. Among eukaryotes, an extreme example is found in microsporidians, which are anaerobic, obligate intracellular parasites related to fungi that have the smallest nuclear genomes known (except for the relic nucleomorphs of some secondary plastids). Mikrocytids are superficially similar to microsporidians: they are also small, reduced, obligate parasites; however, as they belong to a very different branch of the tree of eukaryotes, the rhizarians, such similarities must have evolved in parallel. Since little genomic data are available from mikrocytids, we assembled a draft genome of the type species, Mikrocytos mackini, and compared the genomic architecture and content of microsporidians and mikrocytids to identify common characteristics of reduction and possible convergent evolution. RESULTS: At the coarsest level, the genome of M. mackini does not exhibit signs of extreme genome reduction; at 49.7 Mbp with 14,372 genes, the assembly is much larger and gene-rich than those of microsporidians. However, much of the genomic sequence and most (8075) of the protein-coding genes code for transposons, and may not contribute much of functional relevance to the parasite. Indeed, the energy and carbon metabolism of M. mackini share several similarities with those of microsporidians. Overall, the predicted proteome involved in cellular functions is quite reduced and gene sequences are extremely divergent. Microsporidians and mikrocytids also share highly reduced spliceosomes that have retained a strikingly similar subset of proteins despite having reduced independently. In contrast, the spliceosomal introns in mikrocytids are very different from those of microsporidians in that they are numerous, conserved in sequence, and constrained to an exceptionally narrow size range (all 16 or 17 nucleotides long) at the shortest extreme of known intron lengths. CONCLUSIONS: Nuclear genome reduction has taken place many times and has proceeded along different routes in different lineages. Mikrocytids show a mix of similarities and differences with other extreme cases, including uncoupling the actual size of a genome with its functional reduction.


Assuntos
Microsporídios , Microsporídios/genética , Filogenia , Evolução Molecular , Genoma , Íntrons , Eucariotos/genética
3.
J Eukaryot Microbiol ; 70(5): e12987, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37282792

RESUMO

Most Parabasalia are symbionts in the hindgut of "lower" (non-Termitidae) termites, where they widely vary in morphology and degree of morphological complexity. Large and complex cells in the class Cristamonadea evolved by replicating a fundamental unit, the karyomastigont, in various ways. We describe here four new species of Calonymphidae (Cristamonadea) from Rugitermes hosts, assigned to the genus Snyderella based on diagnostic features (including the karyomastigont pattern) and molecular phylogeny. We also report a new genus of Calonymphidae, Daimonympha, from Rugitermes laticollis. Daimonympha's morphology does not match that of any known Parabasalia, and its SSU rRNA gene sequence corroborates this distinction. Daimonympha does however share a puzzling feature with a few previously described, but distantly related, Cristamonadea: a rapid, smooth, and continuous rotation of the anterior end of the cell, including the many karyomastigont nuclei. The function of this rotatory movement, the cellular mechanisms enabling it, and the way the cell deals with the consequent cell membrane shear, are all unknown. "Rotating wheel" structures are famously rare in biology, with prokaryotic flagella being the main exception; these mysterious spinning cells found only among Parabasalia are another, far less understood, example.


Assuntos
Isópteros , Parabasalídeos , Animais , Filogenia , América do Sul
4.
Proc Natl Acad Sci U S A ; 120(7): e2221818120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36763531
5.
Microb Ecol ; 85(1): 307-316, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35048168

RESUMO

Protist-bacteria associations are extremely common. Among them, those involving ciliates of the genus Euplotes are emerging as models for symbioses between prokaryotes and eukaryotes, and a great deal of information is available from cultured representatives of this system. Even so, as for most known microbial symbioses, data on natural populations is lacking, and their ecology remains largely unexplored; how well lab cultures represent actual diversity is untested. Here, we describe a survey on natural populations of Euplotes based on a single-cell microbiomic approach, focusing on taxa that include known endosymbionts of this ciliate. The results reveal an unexpected variability in symbiotic communities, with individual hosts of the same population harboring different sets of bacterial endosymbionts. Co-occurring Euplotes individuals of the same population can even have different essential symbionts, Polynucleobacter and "Candidatus Protistobacter," which might suggest that replacement events could be more frequent in nature than previously hypothesized. Accessory symbionts are even more variable: some showed a strong affinity for one host species, some for a sampling site, and two ("Candidatus Cyrtobacter" and "Candidatus Anadelfobacter") displayed an unusual pattern of competitive exclusion. These data represent the first insight into the prevalence and patterns of bacterial symbionts in natural populations of free-living protists.


Assuntos
Burkholderiaceae , Cilióforos , Euplotes , Humanos , Filogenia , Cilióforos/microbiologia , Bactérias/genética , Meio Ambiente , Simbiose , Rickettsiales , Euplotes/microbiologia
6.
Microbiome ; 10(1): 161, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180959

RESUMO

BACKGROUND: Microbial symbioses in marine invertebrates are commonplace. However, characterizations of invertebrate microbiomes are vastly outnumbered by those of vertebrates. Protists and fungi run the gamut of symbiosis, yet eukaryotic microbiome sequencing is rarely undertaken, with much of the focus on bacteria. To explore the importance of microscopic marine invertebrates as potential symbiont reservoirs, we used a phylogenetic-focused approach to analyze the host-associated eukaryotic microbiomes of 220 animal specimens spanning nine different animal phyla. RESULTS: Our data expanded the traditional host range of several microbial taxa and identified numerous undescribed lineages. A lack of comparable reference sequences resulted in several cryptic clades within the Apicomplexa and Ciliophora and emphasized the potential for microbial invertebrates to harbor novel protistan and fungal diversity. CONCLUSIONS: Microscopic marine invertebrates, spanning a wide range of animal phyla, host various protist and fungal sequences and may therefore serve as a useful resource in the detection and characterization of undescribed symbioses. Video Abstract.


Assuntos
Organismos Aquáticos , Eucariotos , Animais , Organismos Aquáticos/microbiologia , Eucariotos/genética , Fungos/genética , Invertebrados/microbiologia , Filogenia , Simbiose
7.
Curr Biol ; 32(15): R826-R827, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35839761

RESUMO

Symbiotic systems vary in the degree to which the partners are bound to each other1. At one extreme, there are intracellular endosymbionts in mutually obligate relationships with their host, often interpreted as mutualistic. The symbiosis between the betaproteobacterium Polynucleobacter and the ciliate Euplotes (clade B) challenges this view2: although freshwater Euplotes species long ago became dependent on endosymbionts, the many extant Polynucleobacter lineages they harbour arose recently and in parallel from different free-living ancestors2. The host requires the endosymbionts for reproduction and survival3, but each newly established symbiont is ultimately driven to extinction in a cycle of establishment, degeneration, and replacement. Similar replacement events have been observed in sap-feeding insects4-6, a model for bacteria-eukaryote symbioses7, but usually only affect a small subset of the host populations. Most insects retain an ancient coevolving symbiont, suggesting that long-term mutualism and permanent integration remain the rule and symbiont turnovers are mere evolutionary side-stories. Here we show that this is not the case for Euplotes. We examined all known essential Euplotes symbionts and found that none are ancient or coevolving; rather, all are recently established and continuously replaced over relatively short evolutionary time spans, making the symbiosis ancient for the host but not for any bacterial lineage.


Assuntos
Cilióforos , Euplotes , Animais , Bactérias , Evolução Biológica , Euplotes/microbiologia , Insetos , Filogenia , Simbiose
8.
Appl Environ Microbiol ; 88(6): e0243221, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35108076

RESUMO

The family "Candidatus Midichloriaceae" constitutes the most diverse but least studied lineage within the important order of intracellular bacteria Rickettsiales. "Candidatus Midichloriaceae" endosymbionts are found in many hosts, including terrestrial arthropods, aquatic invertebrates, and protists. Representatives of the family are not documented to be pathogenic, but some are associated with diseased fish or corals. Different genera display a range of unusual features, such as full sets of flagellar genes without visible flagella or the ability to invade host mitochondria. Since studies on "Ca. Midichloriaceae" tend to focus on the host, the family is rarely addressed as a unit, and we therefore lack a coherent picture of its diversity. Here, we provide four new midichloriaceae genomes, and we survey molecular and ecological data from the entire family. Features like genome size, ecological context, and host transitions vary considerably even among closely related midichloriaceae, suggesting a high frequency of such shifts, incomplete sampling, or both. Important functional traits involved in energy metabolism, flagella, and secretion systems were independently reduced multiple times with no obvious correspondence to host or habitat, corroborating the idea that many features of these "professional symbionts" are largely independent of host identity. Finally, despite "Ca. Midichloriaceae" being predominantly studied in ticks, our analyses show that the clade is mainly aquatic, with a few terrestrial offshoots. This highlights the importance of considering aquatic hosts, and protists in particular, when reconstructing the evolution of these endosymbionts and by extension all Rickettsiales. IMPORTANCE Among endosymbiotic bacterial lineages, few are as intensely studied as Rickettsiales, which include the causative agents of spotted fever, typhus, and anaplasmosis. However, an important subgroup called "Candidatus Midichloriaceae" receives little attention despite accounting for a third of the diversity of Rickettsiales and harboring a wide range of bacteria with unique features, like the ability to infect mitochondria. Midichloriaceae are found in many hosts, from ticks to corals to unicellular protozoa, and studies on them tend to focus on the host groups. Here, for the first time since the establishment of this clade, we address the genomics, evolution, and ecology of "Ca. Midichloriaceae" as a whole, highlighting trends and patterns, the remaining gaps in our knowledge, and its importance for the understanding of symbiotic processes in intracellular bacteria.


Assuntos
Alphaproteobacteria , Rickettsiales , Alphaproteobacteria/genética , Animais , Bactérias , Filogenia , Simbiose
9.
Microb Genom ; 8(12)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36748607

RESUMO

Comparing obligate endosymbionts with their free-living relatives is a powerful approach to investigate the evolution of symbioses, and it has led to the identification of several genomic traits consistently associated with the establishment of symbiosis. 'Candidatus Nebulobacter yamunensis' is an obligate bacterial endosymbiont of the ciliate Euplotes that seemingly depends on its host for survival. A subsequently characterized bacterial strain with an identical 16S rRNA gene sequence, named Fastidiosibacter lacustris, can instead be maintained in pure culture. We analysed the genomes of 'Candidatus Nebulobacter' and Fastidiosibacter seeking to identify key differences between their functional traits and genomic structure that might shed light on a recent transition to obligate endosymbiosis. Surprisingly, we found almost no such differences: the two genomes share a high level of sequence identity, the same overall structure, and largely overlapping sets of genes. The similarities between the genomes of the two strains are at odds with their different ecological niches, confirmed here with a parallel growth experiment. Although other pairs of closely related symbiotic/free-living bacteria have been compared in the past, 'Candidatus Nebulobacter' and Fastidiosibacter represent an extreme example proving that a small number of (unknown) factors might play a pivotal role in the earliest stages of obligate endosymbiosis establishment.


Assuntos
Bactérias , Simbiose , Simbiose/genética , Filogenia , RNA Ribossômico 16S/genética , Bactérias/genética , Genômica
10.
Curr Biol ; 31(13): R862-R877, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34256922

RESUMO

Most of the genetic, cellular, and biochemical diversity of life rests within single-celled organisms - the prokaryotes (bacteria and archaea) and microbial eukaryotes (protists). Very close interactions, or symbioses, between protists and prokaryotes are ubiquitous, ecologically significant, and date back at least two billion years ago to the origin of mitochondria. However, most of our knowledge about the evolution and functions of eukaryotic symbioses comes from the study of animal hosts, which represent only a small subset of eukaryotic diversity. Here, we take a broad view of bacterial and archaeal symbioses with protist hosts, focusing on their evolution, ecology, and cell biology, and also explore what functions (if any) the symbionts provide to their hosts. With the immense diversity of protist symbioses starting to come into focus, we can now begin to see how these systems will impact symbiosis theory more broadly.


Assuntos
Archaea , Bactérias , Eucariotos , Células Procarióticas , Simbiose , Animais
11.
Sci Rep ; 11(1): 7270, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790354

RESUMO

Cristamonadea is a large class of parabasalian protists that reside in the hindguts of wood-feeding insects, where they play an essential role in the digestion of lignocellulose. This group of symbionts boasts an impressive array of complex morphological characteristics, many of which have evolved multiple times independently. However, their diversity is understudied and molecular data remain scarce. Here we describe seven new species of cristamonad symbionts from Comatermes, Calcaritermes, and Rugitermes termites from Peru and Ecuador. To classify these new species, we examined cells by light and scanning electron microscopy, sequenced the symbiont small subunit ribosomal RNA (rRNA) genes, and carried out barcoding of the mitochondrial large subunit rRNA gene of the hosts to confirm host identification. Based on these data, five of the symbionts characterized here represent new species within described genera: Devescovina sapara n. sp., Devescovina aymara n. sp., Macrotrichomonas ashaninka n. sp., Macrotrichomonas secoya n. sp., and Macrotrichomonas yanesha n. sp. Additionally, two symbionts with overall morphological characteristics similar to the poorly-studied and probably polyphyletic 'joeniid' Parabasalia are classified in a new genus Runanympha n. gen.: Runanympha illapa n. sp., and Runanympha pacha n. sp.


Assuntos
Isópteros , Parabasalídeos , Simbiose , Animais , Parabasalídeos/classificação , Parabasalídeos/fisiologia
12.
Proc Biol Sci ; 286(1907): 20190693, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31311477

RESUMO

Endosymbioses between bacteria and eukaryotes are enormously important in ecology and evolution, and as such are intensely studied. Despite this, the range of investigated hosts is narrow in the context of the whole eukaryotic tree of life: most of the information pertains to animal hosts, while most of the diversity is found in unicellular protists. A prominent case study is the ciliate Euplotes, which has repeatedly taken up the bacterium Polynucleobacter from the environment, triggering its transformation into obligate endosymbiont. This multiple origin makes the relationship an excellent model to understand recent symbioses, but Euplotes may host bacteria other than Polynucleobacter, and a more detailed knowledge of these additional interactions is needed in order to correctly interpret the system. Here, we present the first systematic survey of Euplotes endosymbionts, adopting a classical as well as a metagenomic approach, and review the state of knowledge. The emerging picture is indeed quite complex, with some Euplotes harbouring rich, stable prokaryotic communities not unlike those of multicellular animals. We provide insights into the distribution, evolution and diversity of these symbionts (including the establishment of six novel bacterial taxa), and outline differences and similarities with the most well-understood group of eukaryotic hosts: insects.


Assuntos
Burkholderiaceae/fisiologia , Euplotes/microbiologia , Simbiose , Burkholderiaceae/classificação , Burkholderiaceae/genética , Microbiota , Filogenia , RNA Bacteriano/análise , RNA Ribossômico 16S/análise
13.
J Eukaryot Microbiol ; 66(2): 281-293, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30028565

RESUMO

Environmental sequences have become a major source of information. High-throughput sequencing (HTS) surveys have been used to infer biogeographic patterns and distribution of broad taxa of protists. This approach is, however, more questionable for addressing low-rank (less inclusive) taxa such as species and genera, because of the increased chance of errors in identification due to blurry taxonomic boundaries, low sequence divergence, or sequencing errors. The specious ciliate genus Euplotes partially escapes these limitations. It is a ubiquitous, monophyletic taxon, clearly differentiated from related genera, and with a relatively well-developed internal systematics. It has also been the focus of several ecological studies. We present an update on Euplotes biogeography, taking into consideration for the first time environmental sequences, both traditional (Sanger) and HTS. We inferred a comprehensive small subunit rRNA gene phylogeny of the genus including a newly described marine species, Euplotes enigma, characterized by a unique question mark-shaped macronucleus. We then added available environmental sequences to the tree, mapping associated metadata. The resulting scenario conflicts on many accounts with previously held views, suggesting, for example, that a large diversity of anaerobic Euplotes species exist, and that marine representatives of mainly freshwater lineages (and vice-versa) might be more common than previously thought.


Assuntos
Euplotes/classificação , Euplotes/citologia , Euplotes/genética , Macronúcleo/fisiologia , Microscopia de Fluorescência , Filogenia , RNA de Protozoário/análise , RNA Ribossômico/análise
14.
Microb Ecol ; 78(1): 232-242, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30411190

RESUMO

Symbioses between prokaryotes and microbial eukaryotes, particularly ciliated protists, have been studied for a long time. Nevertheless, researchers have focused only on a few host genera and species, mainly due to difficulties in cultivating the hosts, and usually have considered a single symbiont at a time. Here, we present a pilot study using a single-cell microbiomic approach to circumvent these issues. Unicellular ciliate isolation followed by simultaneous amplification of eukaryotic and prokaryotic markers was used. Our preliminary test gave reliable and satisfactory results both on samples collected from different habitats (marine and freshwater) and on ciliates belonging to different taxonomic groups. Results suggest that, as already assessed for many macro-organisms like plants and metazoans, ciliated protists harbor distinct microbiomes. The applied approach detected new potential symbionts as well as new hosts for previously described ones, with relatively low time and cost effort and without culturing. When further developed, single-cell microbiomics for ciliates could be applied to a large number of studies aiming to unravel the evolutionary and ecological meaning of these symbiotic systems.


Assuntos
Bactérias/isolamento & purificação , Cilióforos/microbiologia , Metagenômica/métodos , Microbiota , Bactérias/classificação , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Evolução Biológica , Cilióforos/genética , Cilióforos/isolamento & purificação , Cilióforos/fisiologia , Ecossistema , Filogenia , Projetos Piloto , Análise de Sequência de DNA , Simbiose
15.
PLoS Biol ; 16(9): e2005849, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30222734

RESUMO

Environmental sequencing has greatly expanded our knowledge of micro-eukaryotic diversity and ecology by revealing previously unknown lineages and their distribution. However, the value of these data is critically dependent on the quality of the reference databases used to assign an identity to environmental sequences. Existing databases contain errors and struggle to keep pace with rapidly changing eukaryotic taxonomy, the influx of novel diversity, and computational challenges related to assembling the high-quality alignments and trees needed for accurate characterization of lineage diversity. EukRef (eukref.org) is an ongoing community-driven initiative that addresses these challenges by bringing together taxonomists with expertise spanning the eukaryotic tree of life and microbial ecologists, who use environmental sequence data to develop reliable reference databases across the diversity of microbial eukaryotes. EukRef organizes and facilitates rigorous mining and annotation of sequence data by providing protocols, guidelines, and tools. The EukRef pipeline and tools allow users interested in a particular group of microbial eukaryotes to retrieve all sequences belonging to that group from International Nucleotide Sequence Database Collaboration (INSDC) (GenBank, the European Nucleotide Archive [ENA], or the DNA DataBank of Japan [DDBJ]), to place those sequences in a phylogenetic tree, and to curate taxonomic and environmental information for the group. We provide guidelines to facilitate the process and to standardize taxonomic annotations. The final outputs of this process are (1) a reference tree and alignment, (2) a reference sequence database, including taxonomic and environmental information, and (3) a list of putative chimeras and other artifactual sequences. These products will be useful for the broad community as they become publicly available (at eukref.org) and are shared with existing reference databases.


Assuntos
Curadoria de Dados , Eucariotos/classificação , Eucariotos/genética , Variação Genética , Filogenia , RNA Ribossômico/genética , Cilióforos/genética , Bases de Dados Genéticas
16.
Environ Microbiol ; 20(6): 2218-2230, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29727060

RESUMO

High-throughput sequencing (HTS) surveys, among the most common approaches currently used in environmental microbiology, require reliable reference databases to be correctly interpreted. The EukRef Initiative (eukref.org) is a community effort to manually screen available small subunit (SSU) rRNA gene sequences and produce a public, high-quality and informative framework of phylogeny-based taxonomic annotations. In the context of EukRef, we present a database for the monophyletic phylum Ciliophora, one of the most complex, diverse and ubiquitous protist groups. We retrieved more than 11 500 sequences of ciliates present in GenBank (28% from identified isolates and 72% from environmental surveys). Our approach included the inference of phylogenetic trees for every ciliate lineage and produced the largest SSU rRNA tree of the phylum Ciliophora to date. We flagged approximately 750 chimeric or low-quality sequences, improved the classification of 70% of GenBank entries and enriched environmental and literature metadata by 30%. The performance of EukRef-Ciliophora is superior to the current SILVA database in classifying HTS reads from a global marine survey. Comprehensive outputs are publicly available to make the new tool a useful guide for non-specialists and a quick reference for experts.


Assuntos
Cilióforos/genética , Bases de Dados de Ácidos Nucleicos , Filogenia , RNA Ribossômico/genética , Sequenciamento de Nucleotídeos em Larga Escala
17.
Nat Ecol Evol ; 2(4): 750, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29487366

RESUMO

The Supplementary Information file originally published with this Article was missing Supplementary Figs 1-7. This has now been corrected.

18.
Protist ; 169(1): 43-52, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29414319

RESUMO

Symbiosis is a diverse and complex phenomenon requiring diverse model systems. The obligate relationship between a monophyletic group of Euplotes species ("clade B") and the betaproteobacteria Polynucleobacter and "Candidatus Protistobacter" is among the best-studied in ciliates, and provides a framework to investigate symbiont replacements. Several other Euplotes-bacteria relationships exist but are less understood, such as the co-dependent symbiosis between Euplotes magnicirratus (which belongs to "clade A") and the alphaproteobacterium "Candidatus Devosia euplotis". Here we describe a new Devosia inhabiting the cytoplasm of a strain of Euplotes harpa, a clade B species that usually depends on Polynucleobacter for survival. The novel bacterial species, "Candidatus Devosia symbiotica", is closely related to the symbiont of E. magnicirratus, casting a different light on the history of bacteria colonizing ciliates of this genus. The two Devosia species may have become symbionts independently or as the result of a symbiont exchange between hosts, in either case replacing a previous essential bacterium in E. harpa. Alternatively, both may be remnants of an ancient symbiotic relationship between Euplotes and Devosia, in which case Polynucleobacter and "Ca. Protistobacter" are recent invaders. Either way, symbiont replacement between bacteria belonging to different classes must be evoked to explain this fascinating system.


Assuntos
Cilióforos/microbiologia , Hyphomicrobiaceae/fisiologia , Simbiose , Evolução Biológica , Cilióforos/classificação , Cilióforos/genética , Cilióforos/fisiologia , Citoplasma/microbiologia , Hyphomicrobiaceae/genética , Hyphomicrobiaceae/isolamento & purificação , Filogenia
19.
J Eukaryot Microbiol ; 65(2): 159-169, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28710832

RESUMO

Spirotrichonymphea is a class of hypermastigote parabasalids defined by their spiral rows of many flagella. They are obligate hindgut symbionts of lower termites. Despite more than 100 yr of morphological and ultrastructural study, the group remains poorly characterised by molecular data and the phylogenetic positions and taxonomic validity of most genera remain in question. The genus Spirotrichonympha has been reported to inhabit several termite genera, including Reticulitermes, Coptotermes, and Hodotermopsis. The type species for this genus, Spirotrichonympha flagellata, was described from Reticulitermes lucifugus but no molecular data are yet available for this species. In this study, three new Spirotrichonympha species are described from three species of Reticulitermes. Their molecular phylogenetic position indicates that the genus is not monophyletic, as Spirotrichonympha species from Coptotermes, Paraneotermes, and Hodotermopsis branch separately. In contrast, the genus Holomastigotoides is monophyletic, as demonstrated using new sequences from Holomastigotoides species. The presence of Holomastigotoides in Prorhinotermes and the distinct phylogenetic positions of Spirotrichonympha from Reticulitermes and Coptotermes are consistent with a previously proposed symbiont fauna replacement in the ancestor of Reticulitermes.


Assuntos
Isópteros/microbiologia , Parabasalídeos/classificação , Parabasalídeos/citologia , Parabasalídeos/ultraestrutura , Animais , Sistema Digestório/microbiologia , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie , Simbiose
20.
Sci Rep ; 7(1): 16349, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-29180788

RESUMO

Pseudotrichonympha is a large and structurally complex genus of parabasalian protists that play a key role in the digestion of lignocellulose in the termite hindgut. Like many termite symbionts, it has a conspicuous body plan that makes genus-level identification relatively easy, but species-level diversity of Pseudotrichonympha is understudied. Molecular surveys have suggested the diversity is much greater than the current number of described species, and that many "species" described in multiple hosts are in fact different, but gene sequences from formally described species remain a rarity. Here we describe three new species from Coptotermes and Prorhinotermes hosts, including small subunit ribosomal RNA (SSU rRNA) sequences from single cells. Based on host identification by morphology and DNA barcoding, as well as the morphology and phylogenetic position of each symbiont, all three represent new Pseudotrichonympha species: P. leei, P. lifesoni, and P. pearti. Pseudotrichonympha leei and P. lifesoni, both from Coptotermes, are closely related to other Coptotermes symbionts including the type species, P. hertwigi. Pseudotrichonympha pearti is the outlier of the trio, more distantly related to P. leei and P. lifesoni than they are to one another, and contains unique features, including an unusual rotating intracellular structure of unknown function.


Assuntos
Parabasalídeos/classificação , Parabasalídeos/citologia , Animais , Genes de Protozoários , Isópteros/parasitologia , Microscopia , Parabasalídeos/fisiologia , Filogenia , RNA Ribossômico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...